Technical Proceedings of the 2007 Clean Technology Conference and Trade Show

Clean Technology 2007

Chapter 8: Nanoparticle Processes & Applications

Y-H Tseng, H-Y Lin, C-S Kuo, Y-Y Li and C-P Huang
Industrial Technology Research Institute, TW
262 - 265
photocatalyst, Anatase, Rutile
Thermostability study of commercial P25 TiO2 nanoparticles was carried out by ascending annealing temperature from 400 to 1100 oC. The thermostability of TiO2 structure was measured by X-ray diffraction (XRD). Anatase-Rutile phase transition occurred only when temperature exceeds 600oC. Rutile weight fraction increased from 25 to 100% between 400 oC to 840 oC. Phase transition activation energy was calculated by using Arrenhius plot to be 61.47 kJ/mol with a correlation coefficient (R) value of 0.914. Transmission electron microscope (TEM), Brunauer-Emmett-Teller (BET), and dynamic light scattering (DLS) techniques were applied to determine the size of grown particles. Results of particle size analysis using TEM imaging method were the same as those using BET instruments up to 840 oC. BET measurements tend to overestimate the particle size at temperature greater than 840 oC. In contrast, DLS overestimate the size of TiO2 particles due to agglomeration in solution. Mean TiO2 particle sizes grew from 25 to 450 nm when temperature increased from 400 to 1100 oC. Furthermore, the photocatalytic reactivity in the degradation of dye decreased with the increase of particle size and rutile fraction.
Thermostability of TiO2 nanoparticle and its Photocatalytic Reactivity at Different Anatase/Rutile Ratio